About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Perspectives in using a remotely sensed dryness index in distributed hydrological models at river basin scale

From

Department of Hydrodynamics and Water Resocurces, Technical University of Denmark1

University of Copenhagen2

DHI Water - Environment - Health3

University of Arizona4

In a previous study a spatially distributed hydrological model, based on the MIKE SHE code, was constructed and validated for the 375 000 km2 Senegal River basin in West Africa. The model was constructed using spatial data on topography, soil types and vegetation characteristics together with time-series of precipitation from 112 stations in the basin.

The model was calibrated and validated based on river discharge data from nine stations in the basin for 11 years. Calibration and validation results suggested that the spatial resolution of the input data in parts of the area was not sufficient for a satisfactory evaluation of the modelling performance.

The study further examined the spatial patterns in the model input and output, and it was found that particularly the spatial resolution of the precipitation input had a major impact on the model response. In an attempt to improve the model performance, this study examines a remotely sensed dryness index for its relationship to simulated soil moisture and evaporation for six days in the wet season 1990.

The index is derived from observations of surface temperature and vegetation index as measured by the NOAA Advanced Very High Resolution Radiometer (AVHRR) sensor. The correlation results between the index and the simulation results are of mixed quality. A sensitivity analysis, conducted on both estimates, reveals significant uncertainties in both.

The study suggests that the remotely sensed dryness index with its current use of NOAA AVHRR data does not offer information that leads to a better calibration or validation of the simulation model in a spatial sense. The method potentially may become more suitable with the use of the upcoming high-resolution temporal Meteosat Second Generation data.

Copyright  2002 John Wiley & Sons, Ltd.

Language: English
Publisher: John Wiley & Sons, Ltd.
Year: 2002
Pages: 2973-2987
ISSN: 10991085 and 08856087
Types: Journal article
DOI: 10.1002/hyp.1080
ORCIDs: 0000-0003-4020-0050

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis