About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Experimental Characterization and Simulation of Thermoplastic Polymer Flow Hesitation in Thin-Wall Injection Molding Using Direct In-Mold Visualization Technique

From

Department of Mechanical Engineering, Technical University of Denmark1

Manufacturing Engineering, Department of Mechanical Engineering, Technical University of Denmark2

A special mold provided with a glass window was used in order to directly evaluate the flow progression during the filling phase of the injection molding process in a thin-wall cavity and to validate the simulation of the process with particular focus on the hesitation effect. The flow of the polymer was recorded at 500 frames per second using a high-speed camera (HSC).

Two unfilled thermoplastic polymers, acrylonitrile butadiene styrene (ABS), and polypropylene (PP), were used to fill two different 50 mm × 18 mm staircase geometry cavities, which were specifically designed to evaluate the hesitation effect with thicknesses of 1500, 1250, 1000, 750, 500 µm (cavity insert no. 1) and 1500, 1200, 900, 600, 300 µm (cavity insert no. 2).

In addition to the video recordings, the simulations were validated using the timings and the data obtained by three pressure sensors and two thermocouples located in the cavity. For each injection cycle recorded on camera the machine data were collected to carefully implement the correct boundary conditions in the simulations.

The analysis of the video recordings highlighted that flow progression and hesitation were mainly influenced not only by the thickness, but also by the velocity and the material type. The simulation results were in relatively good agreement with the experiments in terms of flow pattern and progression.

Filling times were predicted with an average relative error deviation of 2.5% throughout all the section thicknesses of the cavity. Lower accuracies in terms of both filling times and injection pressure were observed at increasingly thinner sections.

Language: English
Publisher: MDPI AG
Year: 2020
Pages: 428
ISSN: 2072666x
Types: Journal article
DOI: 10.3390/mi11040428
ORCIDs: Regi, Francesco , Zhang, Yang and Tosello, Guido

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis