About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Intake to Production Ratio: A Measure of Exposure Intimacy for Manufactured Chemicals

From

University of California at San Diego1

Department of Civil Engineering, Technical University of Denmark2

Section for Indoor Environment, Department of Civil Engineering, Technical University of Denmark3

Virginia Polytechnic Institute and State University4

United States Environmental Protection Agency5

BACKGROUND: Limited data are available to assess human exposure to thousands of chemicals currently in commerce. Information that relates human intake of a chemical to its production and use can help inform understanding of mechanisms and pathways that control exposure and support efforts to protect public health.OBJECTIVES: We introduce the intake-to-production ratio (IPR) as an economy-wide quantitative indicator of the extent to which chemical production results in human exposure.METHODS: The IPR was evaluated as the ratio of two terms: aggregate rate of chemical uptake in a human population (inferred from urinary excretion data) divided by the rate that chemical is produced in or imported into that population's economy.

We used biomonitoring data from the U.S. Centers for Disease Control and Prevention along with chemical manufacturing data reported by the U.S. Environmental Protection Agency, as well as other published data, to estimate the IPR for nine chemicals in the United States. Results are reported in units of parts per million, where 1 ppm indicates 1 g of chemical uptake for every million grams of economy-wide use.RESULTS: Estimated IPR values for the studied compounds span many orders of magnitude from a low of 0.6 ppm for bisphenol A to a high of > 180,000 ppm for methyl paraben.

Intermediate results were obtained for five phthalates and two chlorinated aromatic compounds: 120 ppm for butyl benzyl phthalate, 670 ppm for di(2-ethylhexyl) phthalate, 760 ppm for di(n-butyl) phthalate, 1,040 ppm for para-dichlorobenzene, 6,800 ppm for di(isobutyl) phthalate, 7,700 ppm for diethyl phthalate, and 8,000-24,000 ppm (range) for triclosan.CONCLUSION: The IPR is well suited as an aggregate metric of exposure intensity for characterizing population-level exposure to synthesized chemicals, particularly those that move fairly rapidly from manufacture to human intake and have relatively stable production and intake rates.

Language: English
Publisher: National Institute of Environmental Health Sciences
Year: 2012
Pages: 1678-1683
ISSN: 15529924 , 00916765 and 15424367
Types: Journal article
DOI: 10.1289/ehp.1204992

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis