About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Conference paper

High performance and highly durable infiltrated cathodes using Pr-modified Ce0.9Gd0.1O1.95 backbone

In Proceedings of 38th International Conference and Expo on Advanced Ceramics and Composites (icacc-38) — 2014
From

Department of Energy Conversion and Storage, Technical University of Denmark1

Mixed Conductors, Department of Energy Conversion and Storage, Technical University of Denmark2

Fundamental Electrochemistry, Department of Energy Conversion and Storage, Technical University of Denmark3

Infiltration of electrocatalysts into ionic conducting backbones (e.g. Sr – doped LaCoO3 (LSC) into Ce0.9Gd0.1O1.95 (CGO)) is becoming a widely popular means of preparing composite cathodes for SOFCs. The high surface area nanoparticle grains of the electrocatalyst obtained using the method enhances the available area for oxygen surface exchange.

However, during long term operation, the nanoparticles exhibit significant grain growth and subsequent loss of percolation thus increasing both the ohmic (Rs) and polarization (Rp) resistance. Here, we present a way to mitigate the problem by doping the CGO backbone with Pr through infiltration into the structure followed by firing.

The Pr – modified CGO backbone is then infiltrated with LSC. The electrochemical performance of the infiltrated cathodes with and without Pr modification in the backbone was studied by impedance spectroscopy on symmetric cells during 1000 h operation and under varying firing temperatures. It is found that the cathodes with Pr – modified backbones exhibit lower Rp and are more tolerant to heat temperature treatments as evidenced by the lesser increase in Rp and Rs at 600 °C after heating at a maximum temperature of 900 °C (without Pr: Rp from 0.094 to 0.45 Ω cm2, Rs from 0.74 to 0.79 Ω cm2; with Pr: Rp from 0.051 to 0.32 Ω cm2, Rs from 0.74 to 0.71 Ω cm2).

The improved performance and heat treatment tolerance is thought to originate from the imparted electronic conductivity into the CGO backbone by introducing Pr.

Language: English
Publisher: American Ceramic Society
Year: 2014
Proceedings: 38th International Conference and Expo on Advanced Ceramics and Composites
Types: Conference paper
ORCIDs: Bonanos, Nikolaos , Chatzichristodoulou, Christodoulos and Hendriksen, Peter Vang

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis