About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Investigation of the load reduction potential of two trailing edge flap controls using CFD

From

Aeroelastic Design, Wind Energy Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark1

Wind Energy Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark2

Risø National Laboratory for Sustainable Energy, Technical University of Denmark3

In this work, a 2D aero‐servo‐elastic model of an airfoil section with 3 degrees of freedom (DOF) based on the 2D CFD solver EllipSys2D to calculate the aerodynamic forces is utilized to calculate the load reduction potential of an airfoil equipped with an adaptive trailing edge flap (ATEF) and subjected to a turbulent inflow signal.

The employed airfoil model corresponds to a successfully tested prototype airfoil where piezoelectric actuators were used for the flapping. In the present investigation two possible control methods for the flap are compared in their ability to reduce the fluctuating normal forces on the airfoil due to a 4 s turbulent inflow signal and the best location of the measurement point for the respective control input is determined.

While Control 1 uses the measurements of a Pitot tube mounted in front of the leading edge (LE) as input, Control 2 uses the pressure difference between the pressure and suction side of the airfoil measured at a certain chord position. Control 1 achieves its maximum load reduction of RStd(Fy) = 76.7% for the shortest Pitot tube of the test, i.e. a Pitot tube with a length of 0.05% of the chord length.

Control 2 shows the highest load reduction of RStd(Fy) = 77.7% when the pressure difference is measured at a chord position of approximately 15%. Copyright © 2010 John Wiley & Sons, Ltd.

Language: English
Publisher: John Wiley & Sons, Ltd.
Year: 2011
Pages: 449-462
ISSN: 10991824 and 10954244
Types: Journal article
DOI: 10.1002/we.435
ORCIDs: Sørensen, Niels N. and Zahle, Frederik

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis