About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Preprint article · Journal article

Viscous flow in a soft valve

From

Department of Physics, Technical University of Denmark1

Biophysics and Fluids, Department of Physics, Technical University of Denmark2

University of California at Davis3

Technical University of Denmark4

Fluid-structure interactions are ubiquitous in nature and technology. However, the systems are often so complex that numerical simulations or ad hoc assumptions must be used to gain insight into the details of the complex interactions between the fluid and solid mechanics. In this paper, we present experiments and theory on viscous flow in a simple bioinspired soft valve which illustrate essential features of interactions between hydrodynamic and elastic forces at low Reynolds numbers.

The set-up comprises a sphere connected to a spring located inside a tapering cylindrical channel. The spring is aligned with the central axis of the channel and a pressure drop is applied across the sphere, thus forcing the liquid through the narrow gap between the sphere and the channel walls. The sphere's equilibrium position is determined by a balance between spring and hydrodynamic forces.

Since the gap thickness changes with the sphere's position, the system has a pressure-dependent hydraulic resistance. This leads to a nonlinear relation between applied pressure and flow rate: flow initially increases with pressure, but decreases when the pressure exceeds a certain critical value as the gap closes.

To rationalize these observations, we propose a mathematical model that reduced the complexity of the flow to a two-dimensional lubrication approximation. A closed-form expression for the pressure drop/flow rate is obtained which reveals that the flow rate Q depends on the pressure drop Δp, sphere radius a, gap thickness h0, and viscosity η as Q ∼η-1 a1/2h05/2 (1 - Δp/Δpc)5/2Δp, where the critical pressure Δpc scales with spring constant k as Δpc ∼ kh0a-2.

These predictions compared favourably to the results of our experiments with no free parameters.

Language: English
Publisher: Cambridge University Press
Year: 2018
Pages: 10
ISSN: 14697645 and 00221120
Types: Preprint article and Journal article
DOI: 10.1017/jfm.2017.805
ORCIDs: Jensen, K. H.

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis