About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Secretory expression of functional barley limit dextrinase by Pichia pastoris using high cell-density fermentation

From

Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark1

Department of Systems Biology, Technical University of Denmark2

Heterologous production of large multidomain proteins from higher plants is often cumbersome. Barley limit dextrinase (LD), a 98 kDa multidomain starch and alpha-limit dextrin debranching enzyme, plays a major role in starch mobilization during seed germination and is possibly involved in starch biosynthesis by trimming of intermediate branched alpha-glucan structures.

Highly active barley LD is obtained by secretory expression during high cell-density fermentation of Pichia pastoris. The LD encoding gene fragment without signal peptide was subcloned in-frame with the Saccharomyces cerevisiae alpha-factor secretion signal of the P. pastoris vector pPIC9K under control of the alcohol oxidase I promoter.

Optimization of a fed-batch fermentation procedure enabled efficient production of LD in a 5-L bioreactor, which combined with affinity chromatography on beta-cyclodextrin-Sepharose followed by Hiload Superdex 200 gel filtration yielded 34 mg homogenous LID (84% recovery). The identity of the recombinant LD was verified by N-terminal sequencing and by mass spectrometric peptide mapping.

A molecular mass of 98 kDa was estimated by SDS-PAGE in excellent agreement with the theoretical value of 97419 Da. Kinetic constants of LD catalyzed pullulan hydrolysis were found to K-m,K-app = 0.16 +/- 0.02 mg/mL and k(cat,app) = 79 +/- 10 s(-1) by fitting the uncompetitive substrate inhibition Michaelis-Menten equation, which reflects significant substrate inhibition and/or transglycosylation.

The resulting catalytic coefficient, k(cat,app)/K-m,K-app = 488 +/- 23 mL/(mg s) is 3.5-fold higher than for barley malt LD. Surface plasmon resonance analysis showed alpha-, beta-, and gamma-cyclodextrin binding to LD with K-d of 27.2, 0.70, and 34.7 mu M, respectively.

Language: English
Year: 2010
Pages: 112-119
ISSN: 10960279 and 10465928
Types: Journal article
DOI: 10.1016/j.pep.2009.08.016
ORCIDs: Abou Hachem, Maher and Svensson, Birte

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis