About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article · Preprint article

Ab initio study of spin-dependent transport in carbon nanotubes with iron and vanadium adatoms

From

Theoretical Nanoelectronics Group, Theory Section, Department of Micro- and Nanotechnology, Technical University of Denmark1

Theory Section, Department of Micro- and Nanotechnology, Technical University of Denmark2

Department of Micro- and Nanotechnology, Technical University of Denmark3

We present an ab initio study of spin-dependent transport in armchair carbon nanotubes with transition metal adsorbates: iron or vanadium. The method based on density functional theory and nonequilibrium Green's functions is used to compute the electronic structure and zero-bias conductance. The presence of the adsorbate causes scattering of electrons of mainly one spin type.

The scattering is shown to be due to a coupling of the two armchair band states to the metal 3d orbitals with matching symmetry, giving rise to Fano antiresonances appearing as dips in the transmission function. The spin type (majority or minority) being scattered depends on the adsorbate and is explained in terms of d-state filling.

We contrast the single-walled carbon nanotube results to the simpler case of the adsorbate on a flat graphene sheet with periodic boundary conditions and corresponding width in the zigzag direction, where the d-orbital selectivity is easily understood in terms of a simple tight-binding model.

Language: English
Year: 2008
Pages: 7
ISSN: 1550235x , 10980121 , 10953795 and 01631829
Types: Journal article and Preprint article
DOI: 10.1103/PhysRevB.78.195405
ORCIDs: Brandbyge, Mads and Jauho, Antti-Pekka

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis