About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Mass balance of the Greenland ice sheet (2003-2008) from ICESat data: The impact of interpolation, sampling and firn density

From

Geodynamics, National Space Institute, Technical University of Denmark1

National Space Institute, Technical University of Denmark2

Geodesy, National Space Institute, Technical University of Denmark3

Danish Meteorological Institute4

University of Urbino5

University of Copenhagen6

ICESat has provided surface elevation measurements of the ice sheets since the launch in January 2003, resulting in a unique dataset for monitoring the changes of the cryosphere. Here, we present a novel method for determining the mass balance of the Greenland ice sheet, derived from ICESat altimetry data.

Three different methods for deriving elevation changes from the ICESat altimetry dataset are used. This multi-method approach provides a method to assess the complexity of deriving elevation changes from this dataset. The altimetry alone can not provide an estimate of the mass balance of the Greenland ice sheet.

Firn dynamics and surface densities are important factors that contribute to the mass change derived from remote-sensing altimetry. The volume change derived from ICESat data is corrected for changes in firn compaction over the observation period, vertical bedrock movement and an intercampaign elevation bias in the ICESat data.

Subsequently, the corrected volume change is converted into mass change by the application of a simple surface density model, in which some of the ice dynamics are accounted for. The firn compaction and density models are driven by the HIRHAM5 regional climate model, forced by the ERA-Interim re-analysis product, at the lateral boundaries.

We find annual mass loss estimates of the Greenland ice sheet in the range of 191 +/- 23Gt yr(-1) to 240 +/- 28 Gt yr(-1) for the period October 2003 to March 2008. These results are in good agreement with several other studies of the Greenland ice sheet mass balance, based on different remote-sensing techniques.

Language: English
Publisher: Copernicus Publications
Year: 2011
Pages: 173-186
ISSN: 19940424 and 19940416
Types: Journal article
DOI: 10.5194/tc-5-173-2011
ORCIDs: 0000-0002-9665-1339 , Sørensen, Louise Sandberg , Simonsen, Sebastian Bjerregaard , Nielsen, Karina and Forsberg, René

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis