About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Purified lactases versus whole-cell lactases-the winner takes it all

From

Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark1

National Food Institute, Technical University of Denmark2

Lactose-free dairy products are in great demand worldwide due to the high prevalence of lactose intolerance. To make lactose-free dairy products, commercially available β-galactosidase enzymes, also termed lactases, are used to break down lactose to its constituent monosaccharides, glucose and galactose.

In this mini-review, the characteristics of lactase enzymes, their origin, and ways of use are discussed in light of their potential for hydrolyzing lactose. We also discuss whole-cell lactase catalysts, which appear to have great potential in terms of cost reduction and convenience, and which are more natural alternatives to purified enzymes.

Lactic acid bacteria (LAB) already used in food fermentations seem to be optimal candidates for whole-cell lactases. However, they have not been industrially exploited yet due to technical hurdles. For whole-cell lactases to be efficient, the lactase enzymes inside the cells must be made available for lactose hydrolysis, and thus, cells need to be permeabilized or disrupted prior to use.

Here we review state-of-the-art approaches for disrupting or permeabilizing microorganisms. Lastly, based on recent scientific achievements, we propose a novel, resource-efficient, and low-cost scenario for achieving lactose hydrolysis at a dairy plant using a LAB whole-cell lactase.Key points• Lactases (β-galactosidase) are essential for producing lactose-free dairy products• Novel permeabilization techniques facilitate the use of LAB lactases• Whole-cell lactase catalysts have great potential for reducing costs and resources Graphical abstract.

Language: English
Publisher: Springer Berlin Heidelberg
Year: 2021
Pages: 4943-4955
ISSN: 14320614 and 01757598
Types: Journal article
DOI: 10.1007/s00253-021-11388-7
ORCIDs: Dorau, Robin , Jensen, Peter Ruhdal and Solem, Christian

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis