About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Bovine Abortions Revisited—Enhancing Abortion Diagnostics by 16S rDNA Amplicon Sequencing and Fluorescence in situ Hybridization

From

Department of Biotechnology and Biomedicine, Technical University of Denmark1

Section for Microbial and Chemical Ecology, Department of Biotechnology and Biomedicine, Technical University of Denmark2

Bacterial Ecophysiology and Biotechnology, Section for Microbial and Chemical Ecology, Department of Biotechnology and Biomedicine, Technical University of Denmark3

Center for Microbial Secondary Metabolites, Centers, Technical University of Denmark4

National Veterinary Institute, Technical University of Denmark5

Federal Research Institute for Animal Health6

University of Copenhagen7

Department of Health Technology, Technical University of Denmark8

Center for Diagnostics, Department of Health Technology, Technical University of Denmark9

Abortion in cattle causes significant economic losses for cattle farmers worldwide. The diversity of abortifacients makes abortion diagnostics a complex and challenging discipline that additionally is restrained by time and economy. Microbial culture has traditionally been an important method for the identification of bacterial and mycotic abortifacients.

However, it comes with the inherent bias of favoring the easy-to-culture species, e.g., those that do not require cell culture, pre-enrichment, a variety of selective growth media, or different oxygen levels for in vitro growth. Molecular methods such as polymerase chain reaction (PCR) and next-generation sequencing have been established as alternatives to traditional microbial culturing methods in several diagnostic fields including abortion diagnostics.

Fluorescence in situ hybridization (FISH), a bridging microscopy technique that combines molecular accuracy with culture independence, and spatial resolution of the pathogen-lesion relation, is also gaining influence in several diagnostic fields. In this study, real-time quantitative PCR (qPCR), 16S rDNA amplicon sequencing, and FISH were applied separately and in combination in order to (i) identify potentially abortifacient bacteria without the bias of culturability, (ii) increase the diagnostic rate using combined molecular methods, (iii) investigate the presence of the difficult-to-culture zoonotic agents Coxiella burnetii, Chlamydia spp., and Leptospira spp. in bovine abortions in Denmark.

Tissues from 162 aborted or stillborn bovine fetuses and placentas submitted for routine diagnostics were screened for pathogenic bacteria using 16S rDNA amplicon sequencing. Lesion association of fungal elements, as well as of selection of bacterial abortifacients, was assessed using specific FISH assays.

The presence of Chlamydia spp. and chlamydia-like organisms was assessed using qPCR. The study focused on bacterial and fungal abortifacients, because Danish cattle is free from most viral abortifacients. The 16S rDNA amplicon sequencing–guided FISH approach was suitable for enhancing abortion diagnostics, i.e., the diagnostic rate for cases with tissue lesions (n = 115) was increased from 46 to 53% when compared to routine diagnostic methods.

Identification of Bacillus licheniformis, Escherichia coli, and Trueperella pyogenes accounted for the majority of additional cases with an established etiology. No evidence for emerging or epizootic bacterial pathogens was found. The difficult-to-culture abortifacients were either not detected or not identified as abortifacients.

Language: English
Publisher: Frontiers Media S.A.
Year: 2021
Pages: 623666
ISSN: 22971769
Types: Journal article
DOI: 10.3389/fvets.2021.623666
ORCIDs: 0000-0003-1653-4552 , Wolf-Jäckel, Godelind Alma , Strube, Mikael Lenz and Jensen, Tim Kåre

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis