About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

The impact of GAL6, GAL80, and MIG1 on glucose control of the GAL system in Saccharomyces cerevisiae

From

Department of Systems Biology, Technical University of Denmark1

Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark2

The role of the proteins encoded by the GAL80 gene, the MIG1 gene and the GAL6 gene in glucose control of galactose consumption by Saccharomyces cerevisiae was studied by physiological characterisation of various GAL mutant strains. Dynamic experiments with the CEN.PK 113-7D wild-type strain and a deltagal80deltamig1 double-mutant strain in aerobic nitrogen-limited continuous cultivations at a dilution rate of 0.1 h(-1), showed simultaneous glucose and galactose consumption by the deltagal80deltamig1 strain.

The wild-type strain did not consume galactose in the presence of glucose. Aerobic batch cultivations on glucose-galactose mixtures with the wild-type strain and with recombinant strains with a de-regulated GAL system (the deltagal80deltamig1 strain, a deltagal6 deleted strain, a deltagal6deltagal80deltamig1 triple mutant, and a deltagal6deltagal80deltamig1 triple mutant harbouring a GAL4 high-copy vector) were carried out.

Generally, a reduction of glucose control lowered the maximum specific growth rate on glucose and increased the ethanol yield obtained on galactose with more than 100%. In contrast to the wild-type strain, the deltagal6deltagal80deltamig1 triple mutant strain consumed glucose and galactose simultaneously, and this strain also showed the highest ethanol production with an overall ethanol yield of 0.35 g g-1 sugar, which is 17% higher than the yield on glucose obtained with the wild-type strain.

GAL80 and MIG1 were demonstrated to be responsible for the majority of the glucose control on the GAL system, whereas GAL6 has a minor role in glucose control. Deletion of GAL6 was shown to have a major impact on biomass and ethanol formation when cells were grown on galactose, and from the data obtained we speculate that Gal6 may be involved in mRNA degradation of the GAL gene transcripts.

Language: English
Year: 2001
Pages: 47-55
ISSN: 15671364 and 15671356
Types: Journal article
DOI: 10.1111/j.1567-1364.2001.tb00012.x

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis