About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Full three dimensional cavitation instabilities using a non-quadratic anisotropic yield function

From

Department of Mechanical Engineering, Technical University of Denmark1

Solid Mechanics, Department of Mechanical Engineering, Technical University of Denmark2

Full three dimensional cell models containing a small cavity are used to study the effect of plastic anisotropy on cavitation instabilities. Predictions for the Barlat-91 model (Int. J. Plast. 7, 693-712, 1991), with a non-quadratic anisotropic yield function, are compared with previous results for the classical anisotropic Hill-48 quadratic yield function (Proc.

Royal Soc. Lond. A193, 281-297, 1948). The critical stress, at which the stored elastic energy will drive the cavity growth, is strongly affected by the anisotropy as compared to isotropic plasticity, but does not show much difference between the two models of anisotropy. While a cavity tends to remain nearly spherical during a cavitation instability in isotropic plasticity, the cavity shapes in an anisotropic material develop towards near-spheroidal elongated shapes, which differ for different values of the coefficients defining the anisotropy.

The shapes found for the Barlat-91 model, with a non-quadratic anisotropic yield function, differ noticeably from the shapes found for the quadratic Hill-48 yield function. Computations are included for a high value of the exponent in the Barlat-91 model, where this model represents a Tresca-like yield surface with rounded corners.

Language: English
Publisher: ASME International
Year: 2020
ISSN: 15289036 and 00218936
Types: Journal article
DOI: 10.1115/1.4044955
ORCIDs: Legarth, Brian Nyvang

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis