About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Preprint article · Journal article

High-energy X-ray imaging of the pulsar wind nebula MSH 15-52: constraints on particle acceleration and transport

From

McGill University1

California Institute of Technology2

North Carolina State University3

University of California at Berkeley4

National Space Institute, Technical University of Denmark5

Astrophysics, National Space Institute, Technical University of Denmark6

Los Alamos National Laboratory7

Columbia University8

NASA Goddard Space Flight Center9

We present the first images of the pulsar wind nebula (PWN) MSH 15−52 in the hard X-ray band (8 keV), as measured with the Nuclear Spectroscopic Telescope Array (NuSTAR). Overall, the morphology of the PWN as measured by NuSTAR in the 3–7 keV band is similar to that seen in Chandra high-resolution imaging.

However, the spatial extent decreases with energy, which we attribute to synchrotron energy losses as the particles move away from the shock. The hard-band maps show a relative deficit of counts in the northern region toward the RCW 89 thermal remnant, with significant asymmetry.We find that the integrated PWN spectra measured with NuSTAR and Chandra suggest that there is a spectral break at 6 keV, which may be explained by a break in the synchrotron-emitting electron distribution at ∼200 TeV and/or imperfect cross calibration.

We also measure spatially resolved spectra, showing that the spectrum of the PWN softens away from the central pulsar B1509−58, and that there exists a roughly sinusoidal variation of spectral hardness in the azimuthal direction. We discuss the results using particle flow models.We find non-monotonic structure in the variation with distance of spectral hardness within 50 of the pulsar moving in the jet direction, which may imply particle and magnetic-field compression by magnetic hoop stress as previously suggested for this source.

We also present two-dimensional maps of spectral parameters and find an interesting shell-like structure in the NH map.We discuss possible origins of the shell-like structure and their implications.

Language: English
Publisher: American Astronomical Society
Year: 2014
Pages: 90
ISSN: 15384357 and 0004637x
Types: Preprint article and Journal article
DOI: 10.1088/0004-637X/793/2/90
ORCIDs: Christensen, Finn Erland

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis