About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Book

Self-Avoiding Walks (SAWs), Entanglement and Biomolecules

From

Department of Mathematics, Technical University of Denmark1

The Self-Avoiding Walk (SAW) on a lattice are often used to study properties of polymers in good solvents such as entanglement, knotting (ring polymers), and statistical mechanical properties of polymers. Recently it has been used to explain the increased probability of phage DNA being knotted when compared to DNA in found in unconstrained environments.

We propose to examine different aspects of SAWs on the square (2D) and cubic (3D) lattice using a dynamical Monte Carlo (MC) method in known as the pivot algorithm. Initially we only consider linear (or open) polymers and look at the entangledness of a (lattice) polymer using the writhe of a curve. A first goal is to study the relationship between the writhe and extension of a polymer/SAW.

Several questions arise naturally in the course of this project including (but not restricted to): the statistical quality of data obtained by MC sampling (autocorrelation times), how to implement geometrical (writhe) and topological (alexander polynomial) numerically, closing the curve we can start to ask questions about random (lattice) knots, optimizing the implementation e.g. using hash-coding ...

Language: English
Year: 2006
Proceedings: Kursus 2006: Videregående Modellering - Anvendt Matematik
Types: Book

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis