About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

In Vitro Evaluation of the Cytotoxic Effect of Streptococcus pyogenes Strains, Protegrin PG-1, Cathelicidin LL-37, Nerve Growth Factor and Chemotherapy on the C6 Glioma Cell Line

From

Russian Academy of Medical Sciences - Institute of Experimental Medicine1

University of Siena2

Department of Biotechnology and Biomedicine, Technical University of Denmark3

Disease Systems Immunology, Section for Protein Science and Biotherapeutics, Department of Biotechnology and Biomedicine, Technical University of Denmark4

Brain cancer treatment, where glioblastoma represents up to 50% of all CNS malignancies, is one of the most challenging calls for neurooncologists. The major driver of this study was a search for new approaches for the treatment of glioblastoma. We tested live S. pyogenes, cathelicidin family peptides and NGF, assessing the oncolytic activity of these compounds as monotherapy or in combination with chemotherapeutics.

For cytotoxicity evaluation, we used the MTT assay, trypan blue assay and the xCELLigence system. To evaluate the safety of the studied therapeutic approaches, we performed experiments on normal human fibroblasts. Streptococci and peptides demonstrated high antitumor efficiency against glioma C6 cells in all assays applied, surpassing the effect of chemotherapeutics (doxorubicin, carboplatin, cisplatin, etoposide).

A real-time cytotoxicity analysis showed that the cell viability index dropped to 21% 2-5 h after S. pyogenes strain exposure. It was shown that LL-37, PG-1 and NGF also exhibited strong antitumor effects on C6 glioma cells when applied at less than 10-4 M. Synergistic effects for combinations of PG-1 with carboplatin and LL-37 with etoposide were shown.

Combinations of S. pyogenes strain #7 with NGF or LL-37 demonstrated a cytotoxic effect (56.7% and 57.3%, accordingly) on C6 glioma cells after 3 h of exposure.

Language: English
Publisher: MDPI AG
Year: 2022
Pages: 569
ISSN: 14203049 and 14315157
Types: Journal article
DOI: 10.3390/molecules27020569
ORCIDs: 0000-0001-7878-6339 and 0000-0002-8773-0932

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis