About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Large-scale spontaneous self-organization and maturation of skeletal muscle tissues on ultra-compliant gelatin hydrogel substrates

From

Department of Health Technology, Technical University of Denmark1

Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark2

Tailored Materials and Tissues, Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark3

Colloids & Biological Interfaces, Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark4

Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark5

University of Copenhagen6

Nanoprobes, Drug Delivery and Sensing, Department of Health Technology, Technical University of Denmark7

Drug Delivery and Sensing, Department of Health Technology, Technical University of Denmark8

Fluidic Array Systems and Technology, Nano and Bio-physical Systems, Department of Health Technology, Technical University of Denmark9

Nano and Bio-physical Systems, Department of Health Technology, Technical University of Denmark10

...and 0 more

Cellular self-organization is the fundamental driving force behind the complex architectures of native tissue. Yet, attempts at replicating native tissue architectures in vitro often involve complex micro-fabrication methods and materials. While impressive progress has been made within engineered models of striated muscle, the wide adaptation of these models is held back by the need for specific tools and knowhow.

In this report, we show that C2C12 myoblasts spontaneously organize into highly aligned myotube tissues on the mm to cm scale, when cultured on sufficiently soft yet fully isotropic gelatin hydrogel substrates. Interestingly, we only observed this phenomenon for hydrogels with Young’s modulus of 6 kPa and below.

For slightly more rigid compositions, only local micrometer-scale myotube organization was observed, similar to that seen in conventional polystyrene dishes. The hydrogel-supported myotubes could be cultured for multiple weeks and matured into highly contractile phenotypes with notable upregulation of myosin heavy chain, as compared to myotubes developed in conventional petri dishes.

The procedure for casting the ultra-soft gelatin hydrogels is straight forward and compatible with standardized laboratory tools. It may thus serve as a simple, yet versatile, approach to generating skeletal muscle tissue of improved physiological relevance for applied and basic research.

Language: English
Publisher: Nature Publishing Group UK
Year: 2020
Pages: 13305
ISSN: 20452322
Types: Journal article
DOI: 10.1038/s41598-020-69936-6
ORCIDs: 0000-0003-1475-5335 , 0000-0001-6139-8268 , Cakal, Selgin D. , Dufva, Martin and Lind, Johan U.

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis