About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

A Finsler geodesic spray paradigm for wildfire spread modelling

From

Department of Applied Mathematics and Computer Science, Technical University of Denmark1

Mathematics, Department of Applied Mathematics and Computer Science, Technical University of Denmark2

One of the finest and most powerful assets of Finsler geometry is its ability to model, describe, and analyze in precise geometric terms an abundance of physical phenomena that are genuinely asymmetric, see e.g. [1, 2, 3, 4, 5, 6, 7, 8, 9]. In this paper we show how wildfires can be naturally included into this family.

Specifically we show how the celebrated and much applied Richards’ equations for the large scale elliptic wildfire spreads have a rather simple Finsler-geometric formulation. The general Finsler framework can be explicitly ‘integrated’ to provide detailed - and curvature sensitive - geodesic solutions to the wildfire spread problem.

The methods presented here stem directly from first principles of 2-dimensional Finsler geometry, and they can be readily extracted from the seminal monographs [10] and [11], but we will take special care to introduce and exemplify the necessary framework for the implementation of the geometric machinery into this new application - not least in order to facilitate and support the dialog between geometers and the wildfire modelling community.

The ‘integration’ part alluded to above is obtained via the geodesics of the ensuing Finsler metric which represents the local fire templates. The ‘paradigm’ part of the present proposal is thus concerned with the corresponding shift of attention from the actual fire-lines to consider instead the geodesic spray - the ‘fire-particles’ - which together, side by side, mold the fire-lines at each instant of time and thence eventually constitute the local and global structure of the wildfire spread.

Language: English
Publisher: Elsevier BV
Year: 2015
Pages: 208-228
ISSN: 18785719 and 14681218
Types: Journal article
DOI: 10.1016/j.nonrwa.2015.09.011
ORCIDs: Markvorsen, Steen

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis