About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Pseudomonas aeruginosa uses type III secretion system to kill biofilm-associated amoebae

From

Technical University of Denmark1

Department of Systems Biology, Technical University of Denmark2

Bacteria and protozoa coexist in a wide range of biofilm communities of natural, technical and medical importance. Generally, this interaction is characterized by the extensive grazing activity of protozoa on bacterial prey populations. We hypothesized that the close spatial coexistence in biofilms should allow opportunistic pathogenic bacteria to utilize their eukaryote-targeting arsenal to attack and exploit protozoan host cells.

Studying cocultures of the environmental pathogen Pseudomonas aeruginosa and the amoeba Acanthamoeba castellanii, we found that P. aeruginosa rapidly colonized and killed biofilm-associated amoebae by a quorum-sensing independent mechanism. Analysis of the amoeba-induced transcriptome indicated the involvement of the P. aeruginosa type III secretion system (T3SS) in this interaction.

A comparison of mutants with specific defects in the T3SS demonstrated the use of the secretion apparatus and the effectors ExoU, ExoS and ExoT in the killing process, of which ExoU had the greatest impact. T3SS-mediated virulence towards A. castellanii was found to be controlled by the global regulators RpoN and RpoS and through modulation of cAMP and alginate biosynthesis.

Our findings suggest that conserved virulence pathways and specifically the T3SS play a central role in bacteria- protozoa interactions in biofilms and may be instrumental for the environmental persistence and evolution of opportunistic bacterial pathogens.

Language: English
Publisher: Nature Publishing Group
Year: 2008
Pages: 843-852
Journal subtitle: Multidisciplinary Journal of Microbial Ecology
ISSN: 17517370 and 17517362
Types: Journal article
DOI: 10.1038/ismej.2008.47

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis