About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Electrochemical nitrogen reduction: recent progress and prospects

From

Henan University1

University of Electronic Science and Technology of China2

Chengdu University3

Electrochemistry, Department of Energy Conversion and Storage, Technical University of Denmark4

Department of Energy Conversion and Storage, Technical University of Denmark5

University of Trieste6

Ammonia is one of the most useful chemicals for the fertilizer industry and is also promising as an important energy carrier for fuel cell application, and is currently mostly produced by the traditional Haber-Bosch process under high temperature and pressure conditions. This energy-intensive process is detrimental to the environment due to the dependence on fossil fuels and the emission of significant greenhouse gases (such as CO2).

Ammonia productionviathe electrochemical nitrogen reduction reaction (ENRR) has been recognized as a green sustainable alternative to the Haber-Bosch process in recent years. Current ENRR research mainly focuses on the catalyst for ammonia selective production and the enhancement of faradaic efficiency at high current density; however, these have not been explored well due to the unavailability of highly efficient and cheap catalysts.

Herein, this review provides information on the ENRR process along with (i) theoretical background, (ii) experimental methodology of the electrocatalytic process and (iii) computational screening of promising catalysts. The impact of active sites and defects on the activity, selectivity, and stability of the catalysts is deeply understood.

Furthermore, we demonstrate the mechanistic understanding of the ENRR process on the surface of catalysts, with the aim of boosting the improvement of the ENRR activities. The ammonia detection methods are also summarized along with thorough discussion of control experiments. Finally, this review highlights prevailing problems in existing ENRR methods of ammonia production along with technical advancements proposed to address these issues and concludes with comments on opportunities and future directions of the ENRR process.

Language: English
Publisher: The Royal Society of Chemistry
Year: 2021
Pages: 7335-7349
ISSN: 1364548x and 13597345
Types: Journal article
DOI: 10.1039/d1cc01451j
ORCIDs: Tufa, Ramatu Ashu , 0000-0001-5276-0210 , 0000-0002-7217-5083 , 0000-0003-4299-8449 and 0000-0001-5034-1135

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis