About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

A Versatile Method for Ammonia Detection in a Range of Relevant Electrolytes via Direct Nuclear Magnetic Resonance Techniques

From

Stanford University1

University of California at Berkeley2

Department of Physics, Technical University of Denmark3

Surface Physics and Catalysis, Department of Physics, Technical University of Denmark4

Department of Chemistry, Technical University of Denmark5

Electrocatalytic N-2 reduction to ammonia has recently attracted a great deal of interest as a possible renewable energy-driven alternative to the Haber-Bosch process. However, the detection of NH3 after attempting electrocatalytic reduction of N-2 can be hampered by low NH3 yields, ambient NH3 contamination, and the need for multistep chemical separation of NH3 from the electrolyte.

Herein, we report a frequency-selective pulse nuclear magnetic resonance (NMR) method and quantify the efficacy of this method to measure the concentration of NH3 (present in the assay as NH4+) in an electrolyte after electrocatalysis. This NMR method was demonstrated to be effective in a variety of nondeuterated, nonaqueous and aqueous electrolytes, and did not require the separation of NH3 from the electrolyte.

NH3 sensitivity down to 1 mu M was readily achieved with isotopic and chemical specificity. Compatible electrolytes and solvents included ethanol, tetrahydrofuran, dimethyl sulfoxide, acetonitrile, propylene carbonate, diethyl either, hexanes, and water. The efficacy of the commonly employed Berthelot method was also quantified and compared to the NMR method in a range of nonaqueous and aqueous electrolytes, including ethanol, THF, propylene carbonate, and water.

Language: English
Publisher: American Chemical Society
Year: 2019
Pages: 5797-5802
ISSN: 21555435
Types: Journal article
DOI: 10.1021/acscatal.9b00358
ORCIDs: Andersen, Suzanne Zamany , Enemark-Rasmussen, Kasper , Colic, Viktor , Yang, Sungeun , Kibsgaard, Jakob , Vesborg, Peter Christian Kjærgaard , Chorkendorff, Ib , 0000-0002-3639-2427 , 0000-0003-3697-2533 , 0000-0002-8903-7306 , 0000-0001-6680-0199 , 0000-0002-1931-7767 , 0000-0002-1084-5336 and 0000-0001-9900-0622

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis