About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Metagenome sequence analysis of filamentous microbial communities obtained from geochemically distinct geothermal channels reveals specialization of three aquificales lineages

From

University of New Mexico1

Montana State University2

Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark3

CFB - Core Flow, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark4

Joint Genome Institute5

Ehime University6

University of Illinois7

Portland State University8

Los Alamos National Laboratory9

The Aquificales are thermophilic microorganisms that inhabit hydrothermal systems worldwide and are considered one of the earliest lineages of the domain Bacteria. We analyzed metagenome sequence obtained from six thermal "filamentous streamer" communities (∼40 Mbp per site), which targeted three different groups of Aquificales found in Yellowstone National Park (YNP).

Unassembled metagenome sequence and PCR-amplified 16S rRNA gene libraries revealed that acidic, sulfidic sites were dominated by Hydrogenobaculum (Aquificaceae) populations, whereas the circum-neutral pH (6.5-7.8) sites containing dissolved sulfide were dominated by Sulfurihydrogenibium spp. (Hydrogenothermaceae).

Thermocrinis (Aquificaceae) populations were found primarily in the circum-neutral sites with undetectable sulfide, and to a lesser extent in one sulfidic system at pH 8. Phylogenetic analysis of assembled sequence containing 16S rRNA genes as well as conserved protein-encoding genes revealed that the composition and function of these communities varied across geochemical conditions.

Each Aquificales lineage contained genes for CO2 fixation by the reverse-TCA cycle, but only the Sulfurihydrogenibium populations perform citrate cleavage using ATP citrate lyase (Acl). The Aquificaceae populations use an alternative pathway catalyzed by two separate enzymes, citryl-CoA synthetase (Ccs), and citryl-CoA lyase (Ccl).

All three Aquificales lineages contained evidence of aerobic respiration, albeit due to completely different types of heme Cu oxidases (subunit I) involved in oxygen reduction. The distribution of Aquificales populations and differences among functional genes involved in energy generation and electron transport is consistent with the hypothesis that geochemical parameters (e.g., pH, sulfide, H2, O2) have resulted in niche specialization among members of the Aquificales.

Language: English
Publisher: Frontiers Media S.A.
Year: 2013
Pages: 84
ISSN: 1664302x
Types: Journal article
DOI: 10.3389/fmicb.2013.00084
ORCIDs: Herrgard, Markus

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis