About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Rationalizing an Unexpected Structure Sensitivity in Heterogeneous Catalysis—CO Hydrogenation over Rh as a Case Study

In Acs Catalysis 2021, Volume 11, pp. 5189-5201
From

CHEC Research Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark1

VISION – Center for Visualizing Catalytic Processes, Centers, Technical University of Denmark2

Stanford University3

Department of Chemical and Biochemical Engineering, Technical University of Denmark4

National Centre for Nano Fabrication and Characterization, Technical University of Denmark5

Catalysis and Operando Characterization, Nanocharacterization, National Centre for Nano Fabrication and Characterization, Technical University of Denmark6

Surface Physics and Catalysis, Department of Physics, Technical University of Denmark7

Department of Physics, Technical University of Denmark8

Atomic-scale Materials Dynamics, Nanocharacterization, National Centre for Nano Fabrication and Characterization, Technical University of Denmark9

Nanocharacterization, National Centre for Nano Fabrication and Characterization, Technical University of Denmark10

Center for Nanostructured Graphene, Centers, Technical University of Denmark11

...and 1 more

A common expectation in heterogeneous catalysis is that the optimal activity will occur for the particle size with the highest concentration of undercoordinated step, edge, or corner sites, expectedly in the <5 nm range. However, many metal-catalyzed reactions follow a different trend, where the turnover frequency (TOF, here rate per surface atom) is instead lower for these smaller particles and increases strongly with increasing size toward a stabilized level with a size-independent TOF.

Here, we use one of these reactions, the Rh-catalyzed CO hydrogenation to hydrocarbons and C2-oxygenates, to illuminate the origin of this effect. Studying Rh/SiO2 catalysts, we show that smaller (<4 nm) Rh particles are richer in undercoordinated edge, corner, and step sites, but are nevertheless of lower activity because the entire surface, including the planar facets, is shifted to a prohibitively high adsorbate coverage—in this case of CO.

In transient experiments, where the inhibiting adsorbates are allowed to desorb, smaller 1.7 nm Rh particles and larger 3.7 nm Rh particles reach similar rates of CO activation despite the steady-state TOF being an order of magnitude higher on the larger particles. This shows that it is a prohibitive adsorbate coverage under reaction conditions rather than a lower number of active sites or a lower intrinsic activity of the sites that causes the lower activity of the smaller particles.

In steady-state experiments at 20 bar, the TOF for CO hydrogenation increases by 55% from 3.7 nm Rh particles to 5.3 nm Rh particles even though the measured concentration of step sites decreases by 30% in this size range. This indicates that such undercoordinated sites are not necessarily the primary active centers and that the reaction is instead focused on the planar facets.

The reaction kinetics show that the reaction becomes increasingly pressure-dependent with increasing particle size, implying that the surface becomes increasingly free of adsorbates on larger particles. Taken together with the indications that the reaction may be focused on the planar facets, this leads to the new insight that it is a prohibitively high adsorbate coverage on the entire surface (and not just on a minority of undercoordinated sites) that is the primary reason for the low activity of small nanoparticles.

The identification of a detrimental high-coverage state for small particles is expected to be of general relevance to the many industrially important reactions sharing the same behavior. The high-coverage state is not exclusively negative, but can also facilitate different reaction pathways. It is the higher CO coverage on small particles that drives the C2-oxygenate formation and is the reason for the high selectivity of rhodium to such complex products, which is at its highest for the smallest (∼2 nm) investigated particles.

Language: English
Publisher: American Chemical Society
Year: 2021
Pages: 5189-5201
ISSN: 21555435
Types: Journal article
DOI: 10.1021/acscatal.0c05002
ORCIDs: Smitshuysen, Thomas E. L. , Hansen, Thomas W. , Damsgaard, Christian D. , Jensen, Anker D. , Christensen, Jakob M. and 0000-0003-3606-0956

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis