About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Silica nanoparticle surface chemistry: An important trait affecting cellular biocompatibility in two and three dimensional culture systems

From

Department of Health Technology, Technical University of Denmark1

Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark2

Colloids & Biological Interfaces, Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark3

Biologically Inspired Material Engineering, Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark4

Sharif University of Technology5

National Institute for Genetic Engineering and Biotechnology Iran6

Great advantages bestowed by mesoporous silica nanoparticles (MSNs) including high surface area, tailorable pore diameter and surface chemistry, and large pore volume render them as efficient tools in biomedical applications. Herein, MSNs with different surface chemistries were synthesized and investigated in terms of biocompatibility and their impact on the morphology of bone marrow-derived mesenchymal stem cells both in 2D and 3D culture systems.

Bare MSNs (BMSNs) were synthesized by template removing method using tetraethylorthosilicate (TEOS) as a precursor. The as-prepared BMSNs were then used to prepare amine-functionalized (AMSNs), carboxyl-functionalized (CMSNs) and polymeric amine-functionalized (PMSNs) samples, consecutively. These nanoparticles were characterized by scanning electron microscopy, zeta potential measurement, dynamic light scattering, BET (Brunauer, Emmett, Teller) analysis, and FTIR technique.

In a 3D culture system, stem cells were encapsulated in alginate hydrogel in which MSNs of different functionalities were incorporated. The results showed good biocompatibility for both BMSNs and AMSNs in 2D and 3D culture systems. For these samples, the viability of about 80% was acquired after 2 weeks of 3D culture.

When compared to the control, CMSNs caused higher cell proliferation in the 2D culture; while they showed cytotoxic effects in the 3D culture system. Interestingly, polymeric amine-functionalized silica nanoparticles (PMSNs) resulted in disrupted morphology and very low viability in the 2D cell culture and even less viability in 3D environment in comparison to BMSNs and AMSNs.

This significant decrease in cell viability was attributed to the higher uptake values of highly positively charged PMSNs by cells as compared to other MSNs. This up-regulated uptake was evaluated by using an inductively coupled plasma optical emission spectroscopy instrument (ICP-OES). These results uncover different interactions between cell and nanoparticles with various surface chemistries.

Building on these results, new windows are opened for employing biocompatible nanoparticles such as BMSNs and AMSNs, even at high concentrations, as potential cargos for carrying required growth and/or differentiation factors for tissue engineering applications.

Language: English
Year: 2019
Pages: 110353
ISSN: 18734367 and 09277765
Types: Journal article
DOI: 10.1016/j.colsurfb.2019.110353
ORCIDs: Hasany, Masoud , Taebnia, Nayere , Mehrali, Mehdi , 0000-0003-3872-2933 and Dolatshahi-Pirouz, Alireza

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis