About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

PhD Thesis

Technology for CZTS-Silicon Tandem Solar Cells

From

Plasma Aided Nanotechnology, Nanofabrication, National Centre for Nano Fabrication and Characterization, Technical University of Denmark1

National Centre for Nano Fabrication and Characterization, Technical University of Denmark2

Silicon-based tandem solar cells will play a major role in the future of the photovoltaics (PV) industry due to their very high efficiency potential. However, the sensitive nature of silicon bulk material, particularly to contamination, has restricted the top absorber's choice for monolithic integration to a few candidates with a limited thermal budget and mild fabrication processes.

In this thesis, we chose Cu2ZnSnS4, a quaternary compound semiconductor, as a promising non-toxic, earth-abundant, and cheap candidate from emerging thin-film technologies and systematically studied the integration challenges with silicon. For this purpose, we developed a thermally resilient silicon cell structure protected with an ultrathin nitride-based diffusion barrier at the interface of the two cells.

By engineering the interfacial layers, we managed to keep the silicon cell intact during the full top cell fabrication and demonstrated a world-record efficiency for a CZTS-Si tandem solar cell. The developed technology enables not only the growth of a wide range of materials on silicon but also provides new insights to the PV community for future silicon-based tandem cell architectures.

Language: English
Publisher: DTU Nanolab
Year: 2020
Types: PhD Thesis

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis