About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

PhD Thesis

Error Reconciliation Protocols for Continuous-Variable Quantum Key Distribution

From

Quantum Physics and Information Technology, Department of Physics, Technical University of Denmark1

Department of Physics, Technical University of Denmark2

Continuous-variable quantum key distribution (CV-QKD) utilizes an ensemble of coherent states of light to distribute secret encryption keys between two parties. One of the key challenges is the requirement of capacity-approaching error correcting codes in the low signal-to-noise (SNR) regime (SNR < 0 dB).

Multi-level coding (MLC) combined with multi-stage decoding (MSD) can solve this challenge in combination with multi-edge-type low-density parity-check (MET-LDPC) codes which are ideal for low code rates in the low SNR regime due to degree-one variable nodes. However, designing such highly efficient codes remains an open issue.

Here, we introduce the concept of generalized extrinsic-information transfer (G-EXIT) charts for METLDPC codes and demonstrate how this tool can be used to analyze their convergence behavior. We calculate the capacity for each level in the MLC-MSD scheme and use G-EXIT charts to exemplary find codes for some given rates which provide a better decoding threshold compared to previously reported codes.

In comparison to the traditional density evolution method, G-EXIT charts offer a simple and fast asymptotic analysis tool for MET-LDPC codes.A linear optimization approach to design highly efficient MET-LDPC codes at very low SNR, which is highly required by certain applications like CV-QKD will be discussed.

The cascade structure is introduced in terms of three disjoint submatrices and a convex optimization problem is proposed to design highly efficient MET-LDPC codes based on cascade structure. Simulation results show that the proposed algorithm is able to design MET-LDPC codes with efficiency higher than 95%, especially at very low SNR.

Language: English
Publisher: Department of Physics, Technical University of Denmark
Year: 2020
Types: PhD Thesis
ORCIDs: Mani, Hossein

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis