About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Environmental hotspots of lactic acid production systems

From

Innovation Project Leaders, Translational Management, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark1

Pre-Pilot Plant, Translational Management, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark2

iLoop, Translational Management, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark3

Research Groups, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark4

Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark5

Global Econometric Modeling, Research Groups, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark6

Sustainability, Department of Technology, Management and Economics, Technical University of Denmark7

Quantitative Sustainability Assessment, Sustainability, Society and Economics, Department of Technology, Management and Economics, Technical University of Denmark8

Department of Technology, Management and Economics, Technical University of Denmark9

Using selected bio‐based feedstocks as alternative to fossil resources for producing biochemicals and derived materials is increasingly considered an important goal of a viable bioeconomy worldwide. However, to ensure that using selected bio‐based feedstocks is aligned with the global sustainability agenda, impacts along the entire life cycle of biochemical production systems need to be evaluated.

This will help to identify those processes and technologies, which should be targeted for optimizing overall environmental sustainability performance. To address this need, we quantify environmental impacts of biochemical production using distinct bio‐based feedstocks, and discuss the potential for reducing impact hotspots via process optimization.

Lactic acid was used as example biochemical derived from corn, corn stover and Laminaria sp. as feedstocks of different technological maturity. We used environmental life cycle assessment, a standardized methodology, considering the full life cycle of the analyzed biochemical production systems and a broad range of environmental impact indicators.

Across production systems, feedstock production and biorefinery processes dominate life cycle impact profiles, with choice in energy mix and biomass processing as main aspects influencing impact results. Results show that uncertainty increases with decreasing technological maturity. When using Laminaria sp. (least mature among selected feedstocks), impacts are mainly driven by energy utilities (up to 86%) due to biomass drying.

This suggests to focus on optimizing or avoiding this process for significantly increasing environmental sustainability of Laminaria sp.‐based lactic acid production. Our results demonstrate that applying life cycle assessment is useful for identifying environmental impact hotspots at an earlier stage of technological development across biochemical production systems without the aim of identifying the most environmentally friendly bio‐feedstock.

With that, our approach contributes to improving the environmental sustainability of future biochemicals production as part of moving toward a viable bioeconomy worldwide.

Language: English
Publisher: Wiley
Year: 2020
Pages: 19-38
ISSN: 17571707 and 17571693
Types: Journal article
DOI: 10.1111/gcbb.12652
ORCIDs: Ögmundarson, Ólafur , Sukumara, Sumesh , Laurent, Alexis and Fantke, Peter

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis