About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Interactive effects of drought, elevated CO2 and warming on photosynthetic capacity and photosystem performance in temperate heath plants

From

Ecosystems, Biosystems Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark1

Biosystems Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark2

Risø National Laboratory for Sustainable Energy, Technical University of Denmark3

University of Copenhagen4

Increased temperature, atmospheric CO2 and change in precipitation patterns affect plant physiological and ecosystem processes. In combination, the interactions between these effects result in complex responses that challenge our current understanding. In a multi-factorial field experiment with elevated CO2 (CO2, FACE), nighttime warming (T) and periodic drought (D), we investigated photosynthetic capacity and PSII performance in the evergreen dwarf shrub Calluna vulgaris and the grass Deschampsia flexuosa in a temperate heath ecosystem.

Photosynthetic capacity was evaluated using A/Ci curves, leaf nitrogen content and chlorophyll-a fluorescence OJIP induction curves. The PSII performance was evaluated via the total performance index PItotal, which integrates the function of antenna, reaction centers, electron transport and end-acceptor reduction according to the OJIP-test.

The PSII performance was negatively influenced by high air temperature, low soil water content and high irradiance dose. The experimental treatments of elevated CO2 and prolonged drought generally down-regulated Jmax, Vcmax and PItotal. Recovery from these depressions was found in the evergreen shrub after rewetting, while post-rewetting up-regulation of these parameters was observed in the grass.

Warming effects acted indirectly to improve early season Jmax, Vcmax and PItotal. The responses in the multi-factorial experimental manipulations demonstrated complex interactive effects of T × CO2, D × CO2 and T × D × CO2 on photosynthetic capacity and PSII performance. The impact on the O–J, J–I and I–P phases which determine the response of PItotal are discussed.

The single factor effects on PSII performance and their interactions could be explained by parallel adjustments of Vcmax, Jmax and leaf nitrogen in combination. Despite the highly variable natural environment, the OJIP-test was very robust in detecting the impacts of T, D, CO2 and their interactions.

This study demonstrates that future climate will affect fundamental plant physiological processes in a way that is not predictable from single factor treatments. The interaction effects that were observed depended upon both the growth strategy of the species considered, and their ability to adjust during drought and rewetting periods.

Language: English
Year: 2011
Pages: 1550-1561
ISSN: 16181328 and 01761617
Types: Journal article
DOI: 10.1016/j.jplph.2011.02.011
ORCIDs: Mikkelsen, Teis Nørgaard , 0000-0002-9541-8658 and 0000-0002-6531-118X

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis