About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Ab Initio Calculations of the Electronic Properties of Polypyridine Transition Metal Complexes and Their Adsorption on Metal Surfaces in the Presence of Solvent and Counterions

From

CAMD, Department of Physics1

Department of Chemistry2

Os(II)/(III) and Co(II)/(III) polypyridine complexes in aqueous solution are robust molecular entities both in freely solute state and adsorbed on Au(111)- and Pt(111)-electrode surfaces. This class of robust coordination chemical compounds have recently been characterized by electrochemical scanning tunneling microscopy (in situ STM).

The Os-complexes were found to display strong tunneling spectroscopic (STS) features at the level of resolution of the single molecule while STS features of the Co complexes, although clear, were much weaker. The data was framed by concise but phenomenological theory of interfacial electrochemical electron transfer extended to the electrochemical in situ STM configuration.

With a view on first-principle insight into the in situ STM behavior of robust redox (as opposed to nonredox) molecules, we present in this report a density functional theory (DFT) study of the complexes in both free and adsorbate state, in either state exposed to both stoichiometric counterions and a large assembly of solvent water molecules.

The oxidation states of the complexes were controlled, first by introducing chlorine counter atoms followed by spontaneous attraction of electrons from the complexes, also at first in electrostatically neutral form. Second, the solvent is found to provide strong dielectric screening of this charge transfer process and to be crucial for achieving the full chemically meaningful charge separated ionic oxidation states.

The molecular charge and structure of the complexes in the presence of the solvent, are conserved upon adsorption, whereas the structural features of the different oxidation states are completely lost upon adsorption under vacuum conditions. Detailed microscopic insight such as offered by the present study will be important in molecular-based approaches to “smart” redox molecules enclosed in in situ STM or other nanoscale and single-molecules scale configurations in condensed matter environments.

Language: English
Publisher: American Chemical Society
Year: 2011
Pages: 9410-9416
ISSN: 15205207 and 15206106
Types: Journal article
DOI: 10.1021/jp200893w

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis