About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

NanoTIO2 (UV-Titan) does not induce ESTR mutations in the germline of prenatally exposed female mice

From

National Food Institute, Technical University of Denmark1

Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark2

Environmental Health Science and Research Bureau3

National Research Centre for the Working Environment4

Department of Micro- and Nanotechnology, Technical University of Denmark5

Particulate air pollution has been linked to an increased risk of cardiovascular disease and cancer. Animal studies have shown that inhalation of air particulates induces mutations in the male germline. Expanded simple tandem repeat (ESTR) loci in mice are sensitive markers of mutagenic effects on male germ cells resulting from environmental exposures; however, female germ cells have received little attention.

Oocytes may be vulnerable during stages of active cell division (e.g., during fetal development). Accordingly, an increase in germline ESTR mutations in female mice prenatally exposed to radiation has previously been reported. Here we investigate the effects of nanoparticles on the female germline. Since pulmonary exposure to nanosized titanium dioxide (nanoTiO2) produces a long-lasting inflammatory response in mice, it was chosen for the present study.

Findings Pregnant C57BL/6 mice were exposed by whole-body inhalation to the nanoTiO2 UV-Titan L181 (~42.4 mg UV-Titan/m3) or filtered clean air on gestation days (GD) 8–18. Female C57BL/6 F1 offspring were raised to maturity and mated with unexposed CBA males. The F2 descendents were collected and ESTR germline mutation rates in this generation were estimated from full pedigrees (mother, father, offspring) of F1 female mice (192 UV-Titanexposed F2 offspring and 164 F2 controls).

ESTR mutation rates of 0.029 (maternal allele) and 0.047 (paternal allele) in UV-Titan-exposed F2 offspring were not statistically different from those of F2 controls: 0.037 (maternal allele) and 0.061 (paternal allele). Conclusions We found no evidence for increased ESTR mutation rates in F1 females exposed in utero to UV-Titan nanoparticles from GD8-18 relative to control females.

Language: English
Publisher: BioMed Central
Year: 2012
Pages: 19
ISSN: 17438977
Types: Journal article
DOI: 10.1186/1743-8977-9-19

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis