About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Towards a future scenario for offshore wind energy in chile: Breaking the paradigm

From

Universidad de Aysén1

National Space Institute, Technical University of Denmark2

Offshore wind energy continues to be a potential candidate for meeting the electricity consumption needs of the Chilean population for decades to come. However, the Chilean energy market is skeptical about exploiting offshore marine energy. At present, there are no offshore marine energy farms. This is probably attributable to the current legal framework, payback period, initial costs of inversions, and future wind speed trends.

This work aims to break this paradigm by advancing knowledge regarding the main issues concerning offshore marine energy in Chile. To this end, we estimated the Levelized Cost of Energy (LCOE) from 2000 to 2054 using the CMIP RCP 4.5 and 8.5 climate projections. These projections were based on the estimations for a 608 MW offshore wind project located along the Chilean coast.

A comprehensive analysis of the legal framework for implementing offshore marine energy is also presented. The results show that the LCOE ranges between 24 USD/MWh and 2000 USD/MWh. Up to 80% of the study area presents favorable results. Future climate scenarios did not affect the project’s economic viability and notably indicated two major zones with low interannual variability.

In terms of legal frameworks, there is a gap in a Chilean trans‐ministerial law that ends up causing several processes to be duplicated. Further research is needed to reduce the uncertainties associated with offshore wind energy generation on the Chilean coast. This study aims to further knowledge related to both the opportunities and challenges associated with offshore wind.

Language: English
Publisher: MDPI AG
Year: 2021
Pages: 7013
ISSN: 20711050
Types: Journal article
DOI: 10.3390/su13137013
ORCIDs: Alonso‐de‐linaje, Nicolas G.

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis