About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

PhD Thesis

Optical Coherence Tomography: Modeling and Applications

From

Risø National Laboratory for Sustainable Energy, Technical University of Denmark1

An analytical model is presented that is able to describe the performance of OCT systems in both the single and multiple scattering regimes simultaneously. This model inherently includes the shower curtain effect, well-known for light propagation through the atmosphere. This effect has been omitted in previous theoretical models of OCT systems.

It is demonstrated that the shower curtain effect is of utmost importance in the theoretical description of an OCT system. The analytical model, together with proper noise analysis of the OCT system, enables calculation of the SNR, where the optical properties of the tissue are taken into account. Furthermore, by using the model, it is possible to determine the lateral resolution of OCT systems at arbitrary depths in the scattering tissue.

During the Ph.D. thesis project, an OCT system has been constructed, and the theoretical model is verified experimentally using this system. A demonstration of the imaging capabilities of the OCT system is given. Moreover, a novel truereflection OCT imaging algorithm, based on the new OCT model presented in this thesis, is demonstrated.

Finally, a theoretical analysis of the Wigner phase-space distribution function for the OCT geometry, i.e., reflection geometry, is developed. As in the new OCT model, multiple scattered photons has been taken into account together with multiple scattering effects. As an important result, a novel method of creating images based on measurements of the momentum width of the Wigner phase-space distribution is presented, and compared with conventional OCT.

Language: English
Publisher: Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi
Year: 2001
Series: Denmark. Forskningscenter Risoe. Risoe-r
ISBN: 8755027717 , 8755028829 , 9788755027718 and 9788755028821
Types: PhD Thesis

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis