About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Atmospheric chemistry of 1,4-dioxane. Laboratory studies

From

Risø National Laboratory for Sustainable Energy, Technical University of Denmark1

A pulse radiolysis technique was used to measure the UV absorption spectra of c-C4H7O2 and (c-C4H7O2)O2 radicals over the range 220-320 nm, σ(c-C4H7O2)250 nm = (5.9 ± 0.6) × 10-18 and σ[(c-C4H7O2)O2]240 nm = (4.8 × 0.8) × 10-18 cm2 molecule-1. The observed self-reaction rate constants for the c-C4H7O2 and (c-C4H7O2)O2 radicals, defined as -d[c-C4H7O2]/dt = 2k4[c-C4H7O2]2 and -d[(c-C4H7O2)O2]/dt = 2k5 obs[(c-C4H7O2)O2]2 were k4 = (3.3 ± 0.4) × 10-11 and k5 obs = (7.3 ± 1.2) × 10-12 cm3 molecule-1 s-1.

The rate constants for reactions of (c-C4H7O2)O2 radicals with NO and NO2 were k6 (1.2 ± 0.3) × 10-11 and k7 = (1.3 ± 0.3) × 10-11 cm3 molecule-1 s-1, respectively. The rate constants for the reaction of F atoms with 1,4-dioxane and the reaction of c-C4H7O2 radicals with O2, were k3 = (2.4 ± 0.7) × 10-10 and k2 = (8.8 ± 0.9) × 10-12 cm3 molecule-1 s-1, respectively.

A relative rate technique was used to measure the rate constant for the reaction of Cl atoms with 1,4-dioxane, k17 = (2.0 ± 0.3) × 10-10 cm3 molecule-1 s-1. A long-pathlength FTIR spectrometer coupled to a smog chamber system was used to show that the sole atmospheric fate of the alkoxy radical (c-C4H7O2)O is decomposition via C-C bond scission leading to the formation of H(O)COCH2CH2OC(O)H (ethylene glycol diformate).

Language: English
Year: 1997
Pages: 2855-2863
ISSN: 13645455 and 09565000
Types: Journal article
DOI: 10.1039/a700598i
ORCIDs: 0000-0002-0088-3937

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis