About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

PhD Thesis

Ligand binding and activation mechanism og the glucagon-like peptide-1 receptor

From

Department of Chemistry, Technical University of Denmark1

Physical and Biophysical Chemistry, Department of Chemistry, Technical University of Denmark2

In recent years, G-protein coupled receptors (GPCRs) have become important drug targets, which makes elucidation of their molecular structure and functional domains increasingly important for designing new and better therapeutic agents. The Glucagon-Like Peptide-1 receptor (GLP-1R) is a GPCR. Its endogenous agonist, Glucagon-Like Peptide-1 (GLP-1), has a number of physiological effects that contribute to reducing blood sugar and body weight.

Therefore, GLP-1R has become a promising target for the treatment of type 2 diabetes (T2D). The overall purpose of the Ph.D. project has been to investigate how GLP-1R interacts with receptor agonists. The thesis includes four studies, which investigate different aspects of these interactions. The first study elucidates GLP-1 binding to the extracellular domain of GLP-1R (ECD) (Study I), whereas the second study identifies receptor domains important for small molecule-mediated activation of GLP-1R (Study II).

A fully functional, cysteine-deprived and Cterminally truncated GLP-1R is developed and characterised in Study III. In Study IV, a cAMP biosensor is used to investigate the cAMP kinetics of GLP-1R upon stimulation with different receptor agonists. Collectively, the work has contributed to a more detailed understanding of GLP-1R pharmacology in a number of ways.

A crystal structure elucidated the molecular details of GLP- 1 binding to the ECD of GLP-1R and supported the existence of different binding modes of GLP-1 and exendin-4. In addition, the work established that seven cysteine residues in GLP-1R and more than half of the C-terminal tail are not required for GLP-1 binding or function.

Last but not least, site-directed mutagenesis identified receptor domains and specific residues involved in small molecule-mediated activation of GLP-1R.

Language: English
Publisher: DTU Chemical Engineering
Year: 2013
Types: PhD Thesis

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis