About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

The A Priori Design and Selection of Ionic Liquids as Solvents for Active Pharmaceutical Ingredients

From

Department of Chemistry, Technical University of Denmark1

Organic Chemistry, Department of Chemistry, Technical University of Denmark2

Auckland University of Technology3

McGill University4

Massachusetts Institute of Technology5

In this paper we derive a straightforward computational approach to predict the optimal ionic liquid (IL) solvent for a given compound, based on COSMO-RS calculations. These calculations were performed on 18 different active pharmaceutical ingredients (APIs) using a matrix of 210 hypothetical ILs. These results indicated that the 18 APIs could be classified into three distinct categories based on their relative hydrogen bond donating or accepting ability, with similar optimal IL solvent predictions within each class.

Informed by these results, a family of strongly hydrogen bond donating ILs based on the N-alkylguanidinium cation were prepared and characterized. The solubility of the APIs in each of these classes was found to be qualitatively consistent with the predictions of the COSMO-RS model. The suitability of these novel guanidinium salts as crystallization solvents was demonstrated by the use of N-butylguanidinium bis(trifluoromethanesulfonyl)imide for the purification of crude fenofibrate using dimethylsulfoxide as an antisolvent, which resulted in good yields and excellent purities.

Finally, a simple descriptor based model is proposed to suggest the best IL solvent for arbitrary APIs.

Language: English
Publisher: Wiley
Year: 2017
Pages: 5498-5508
ISSN: 15213765 and 09476539
Types: Journal article
DOI: 10.1002/chem.201605704
ORCIDs: 0000-0003-4015-1420

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis