About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Progress in understanding of land surface/atmosphere exchanges at high latitudes

From

Meteorology, Wind Energy Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark1

Wind Energy Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark2

Risø National Laboratory for Sustainable Energy, Technical University of Denmark3

This paper summarises some of the key results from two European field programmes, WINTEX and LAPP, undertaken in the Boreal/Arctic regions in 1996-98. Both programmes have illustrated the very important role that snow plays within these areas, not only in the determination of energy, water and carbon fluxes in the winter, but also in controlling the length of the summer active season, and hence the overall carbon budget.

These studies make a considerable advance in our knowledge of the fluxes from snow-covered landscape and the interactions between snow and vegetation. Also some of the first measurements of greenhouse gas fluxes (carbon dioxide and methane) are reported for the European arctic and sub-arctic. The measurements show a considerable variability across the arctic, with very high instantaneous values from sub-arctic birch and fen areas and extremely low fluxes reported from the polar desert in the high arctic.

The overall annual budgets are everywhere limited by the very short active season in these regions. The heat flux over a high latitude boreal forest during late winter was found to be high. At low solar angles the forest shades most of the snow surface, therefore an important part of the radiation never reaches the snow surface but is absorbed by the forest.

This indicates that in areas with sparse vegetation and low solar angles, absorption of direct solar radiation is due to an apparent vegetation cover, which is much greater than the actual one. The first steps are taken in using these measurements to improve models, both point soil/vegetation/atmosphere transfer schemes and 3D meteorogical models.

The results are encouraging; increasing the realism progressively improves the representation of the fluxes. A start is made in developing landscape, or catchment scale models. There seems to be some hope that comparatively simple relationships between evaporation and photosynthesis and leaf area may be sufficiently robust to allow the use of remotely sensed images to investigate the areally averaged exchanges.

It is suspected that high latitude regions will experience considerable climatic and environmental change in the coming decades. A well found prediction of how these regions will respond requires a comprehensive knowledge of how vegetation will respond and how the changed vegetation will interact with the snow cover and the atmosphere.

The studies from the LAPP and WINTEX programmes presented in this volume are an important contribution to this understanding and provide a useful foundation for future research.

Language: English
Publisher: Springer-Verlag
Year: 2001
Pages: 5-18
ISSN: 14344483 and 0177798x
Types: Journal article
DOI: 10.1007/s007040170002
ORCIDs: Gryning, Sven-Erik

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis