About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Towards accurate structural characterization of metal centres in protein crystals: the structures of Ni and Cu T6 bovine insulin derivatives

From

Department of Chemistry, Technical University of Denmark1

X-ray Crystallography, Department of Chemistry, Technical University of Denmark2

Centre for Catalysis and Sustainable Chemistry, Department of Chemistry, Technical University of Denmark3

Using synchrotron radiation (SR), the crystal structures of T6 bovine insulin complexed with Ni2+ and Cu2+ were solved to 1.50 and 1.45 Å resolution, respectively. The level of detail around the metal centres in these structures was highly limited, and the coordination of water in Cu site II of the copper insulin derivative was deteriorated as a consequence of radiation damage.

To provide more detail, X-ray absorption spectroscopy (XAS) was used to improve the information level about metal coordination in each derivative. The nickel derivative contains hexacoordinated Ni2+ with trigonal symmetry, whereas the copper derivative contains tetragonally distorted hexacoordinated Cu2+ as a result of the Jahn-Teller effect, with a significantly longer coordination distance for one of the three water molecules in the coordination sphere.

That the copper centre is of type II was further confirmed by electron paramagnetic resonance (EPR). The coordination distances were refined from EXAFS with standard deviations within 0.01 Å. The insulin derivative containing Cu2+ is sensitive towards photoreduction when exposed to SR. During the reduction of Cu2+ to Cu+, the coordination geometry of copper changes towards lower coordination numbers.

Primary damage, i.e. photoreduction, was followed directly by XANES as a function of radiation dose, while secondary damage in the form of structural changes around the Cu atoms after exposure to different radiation doses was studied by crystallography using a laboratory diffractometer. Protection against photoreduction and subsequent radiation damage was carried out by solid embedment of Cu insulin in a saccharose matrix.

At 100 K the photoreduction was suppressed by ~15%, and it was suppressed by a further 30% on cooling the samples to 20 K.

Language: English
Publisher: International Union of Crystallography
Year: 2014
Pages: 110-122
ISSN: 13990047 and 09074449
Types: Journal article
DOI: 10.1107/S1399004713029040
ORCIDs: Mossin, Susanne , Ståhl, Kenny and Harris, Pernille

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis