About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Pinched flow fractionation devices for detection of single nucleotide polymorphisms

From

NSE-Optofluidics Group, NanoSystemsEngineering Section, Department of Micro- and Nanotechnology, Technical University of Denmark1

NanoSystemsEngineering Section, Department of Micro- and Nanotechnology, Technical University of Denmark2

Department of Micro- and Nanotechnology, Technical University of Denmark3

Fluidic Array Systems and Technology Group, Biomedical Micro Systems Section, Department of Micro- and Nanotechnology, Technical University of Denmark4

Biomedical Micro Systems Section, Department of Micro- and Nanotechnology, Technical University of Denmark5

We demonstrate a new and flexible micro fluidic based method for genotyping single nucleotide polymorphisms ( SNPs). The method relies on size separation of selectively hybridized polystyrene microspheres in a micro fluidic pinched flow fractionation (PFF) device. The micro fluidic PFF devices with 13 mu m deep channels were fabricated by thermal nanoimprint lithography ( NIL) in a thin film of cyclic-olefin copolymer (mr-I T85) on a silicon wafer substrate, and the channels were sealed by thermal polymer bonding.

Streptavidin coated polystyrene microspheres with a mean diameter of 3.09 mu m and 5.6 mu m were functionalized with biotin-labeled oligonucleotides for the detection of a mutant (Mt) or wild-type (Wt) DNA sequence in the HBB gene, respectively. Hybridization to functionalized beads was performed with fluorescent targets comprising synthetic DNA oligonucleotides or amplified RNA, synthesized using human DNA samples from individuals with point mutations in the HBB gene.

Following a stringent wash, the beads were separated in a PFF device and the fluorescent signal from the beads was analyzed. Patients being wildtypes, heterozygotes or mutated respectively for the investigated mutation could reliably be diagnosed in the PFF device. This indicates that the PFF technique can be used for accurate and fast genotyping of SNPs.

Language: English
Year: 2008
Pages: 818-821
ISSN: 14730189 and 14730197
Types: Journal article
DOI: 10.1039/b802268b
ORCIDs: Dufva, Hans Martin and Kristensen, Anders

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis