About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article · Conference paper

Human in-vivo magnetic resonance current density imaging of the brain by optimizing head tissue conductivities

From

Department of Health Technology, Technical University of Denmark1

Magnetic Resonance, Department of Health Technology, Technical University of Denmark2

Neurophysics, Magnetic Resonance, Department of Health Technology, Technical University of Denmark3

Hvidovre Hospital4

Max Planck Institute for Biological Cybernetics5

MRI Acquisition, Magnetic Resonance, Department of Health Technology, Technical University of Denmark6

University of Copenhagen7

Hyperpolarization & Metabolism, Magnetic Resonance, Department of Health Technology, Technical University of Denmark8

Introduction: Magnetic resonance current density imaging (MRCDI) aims to reconstruct the current flow of transcranial electrical stimulation (TES) in the brain from MR-measurements of the current-induced magnetic field Bz. Aim: We test the performance of a standard reconstruction algorithm (“projected current density algorithm”, PCD, Jeong et al. 2014) for human brain data.

We compare it with current flow simulations using personalized head models. Methods:1. We generated ground-truth data for the TES current flow and Bz-field using a detailed head model and SimNIBS (www.simnibs.org). We applied the PCD algorithm to the Bz -field and quantified the reconstruction performance by comparison with the ground-truth current flow.

We additionally compared the PCD results with simulations using a simple head model (“3c” with scalp, bone and a homogeneous intracranial compartment). 2. We reconstructed the current flow from in-vivo MRCDI data (Göksu et al, 2018) with the PCD algorithm. We also used head models of different complexities (“3c” and “4c”: scalp, skull, CSF & brain) and optimized their conductivities to minimize the root-mean-square difference between the measured and simulated Bz.

Results: 1. For simulated Bz data, the PCD algorithm only coarsely reconstructed the true current flow. Even the simple head model performed better. 2. For measured Bz data, current flows obtained with personalized head models and fitted conductivities explained the measurements better than the current flow reconstructed with the PCD algorithm.

This was already the case for the simple head model (3c). The more detailed model (4c) resulted in further statistically significant improvements. However, for all models, the unexplained variance stayed above the noise floor, indicating remaining differences to unknown true current flow. Conclusions: The PCD algorithm has low accuracy for MRCDI data of the brain.

However, MRCDI is useful for evaluations and improvements of current flow simulations with anatomically detailed personalized head models.

Language: English
Publisher: Elsevier
Year: 2021
Pages: 1591-1592
Proceedings: 4th International Brain Stimulation Meeting
ISSN: 18764754 and 1935861x
Types: Journal article and Conference paper
DOI: 10.1016/j.brs.2021.10.012
ORCIDs: Eroglu, Hasan H. , Gregersen, Fróði , Hanson, Lars G. and Thielscher, Axel

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis