About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Large-area protonic ceramic cells for hydrogen purification

From

Continuum Modelling and Testing, Department of Energy Conversion and Storage, Technical University of Denmark1

Department of Energy Conversion and Storage, Technical University of Denmark2

Chinese Academy of Sciences3

University of Science and Technology of China4

Colorado School of Mines5

Large-area symmetrical protonic ceramic cells (PCCs) are fabricated and tested for electrochemical hydrogen pumping (EHP) applications. BaZr0.1Ce0.7Y0.2O3-δ (BZCY), one of the most popular proton-conducting materials, is selected as the electrolyte material. Two identical Ni(O)-BZCY electrodes are applied to either side of the electrolyte as the anode and cathode.

The PCCs are characterized both in single-atmosphere at open circuit voltage (OCV, symmetrical cell testing) and in dual-atmosphere under current (EHP mode). The electrode polarization resistance (RP) (per single electrode) under single-atmosphere testing is measured to be as low as 0.13, 0.07, 0.065 and 0.06 Ω cm2 in 3% humidified 50H2/50 N2 at 650, 700, 750 and 800 °C, respectively.

The distribution of relaxation times (DRT) analyses of the measured impedance spectra reveal that the cell resistance is dominated by the resistance of the dissociative adsorption of hydrogen processes at 650–700 °C or by that of the hydrogen diffusion at 750–800 °C. The cell shows good electrochemical performance and durability in EHP mode, demonstrating a hydrogen flux of 8.7 mL cm−2 min−1 at 1.33 A cm−2 with a Faradaic efficiency of 90% for pumping pure hydrogen out of 3% humidified 50H2/50 N2 at 650 °C.

Language: English
Year: 2022
Pages: 121301
ISSN: 18733794 and 13835866
Types: Journal article
DOI: 10.1016/j.seppur.2022.121301
ORCIDs: Wang, Qingjie , Miao, Xing-Yuan and Chen, Ming

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis