About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Strain-Specific Metabolic Requirements Revealed by a Defined Minimal Medium for Systems Analyses of Staphylococcus aureus

Edited by Dozois, Charles M.

From

University of California at San Diego1

Big Data 2 Knowledge, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark2

Network Reconstruction in Silico Biology, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark3

Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark4

ALE Technology & Software Development, Research Groups, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark5

Staphylococcus aureus is a Gram-positive pathogenic bacterium that colonizes an estimated one-third of the human population and can cause a wide spectrum of disease, ranging from superficial skin infections to life-threatening sepsis. The adaptive mechanisms that contribute to the success of this pathogen remain obscure partially due to a lack of knowledge of its metabolic requirements.

Systems biology approaches can be extremely useful in predicting and interpreting metabolic phenotypes; however, such approaches rely on a chemically defined minimal medium as a basis to investigate the requirements of the cell. In this study, a chemically defined minimal medium formulation, termed synthetic minimal medium (SMM), was investigated and validated to support growth of three S. aureus strains: LAC and TCH1516 (USA300 lineage), as well as D592 (USA100 lineage).

The formulated SMM was used in an adaptive laboratory evolution experiment to probe the various mutational trajectories of all three strains leading to optimized growth capabilities. The evolved strains were phenotypically characterized for their growth rate and antimicrobial susceptibility. Strains were also resequenced to examine the genetic basis for observed changes in phenotype and to design follow-up metabolite supplementation assays.

Our results reveal evolutionary trajectories that arose from strain-specific metabolic requirements. SMM and the evolved strains can also serve as important tools to study antibiotic resistance phenotypes of S. aureusIMPORTANCE As researchers try to understand and combat the development of antibiotic resistance in pathogens, there is a growing need to thoroughly understand the physiology and metabolism of the microbes.

Staphylococcus aureus is a threatening pathogen with increased antibiotic resistance and well-studied virulence mechanisms. However, the adaptive mechanisms used by this pathogen to survive environmental stresses remain unclear, mostly due to the lack of information about its metabolic requirements.

Defining the minimal metabolic requirements for S. aureus growth is a first step toward unraveling the mechanisms by which it adapts to metabolic stresses. Here, we present the development of a chemically defined minimal medium supporting growth of three S. aureus strains, and we reveal key genetic mutations contributing to improved growth in minimal medium.

Language: English
Publisher: American Society for Microbiology
Year: 2019
Pages: 1-13
ISSN: 10985336 and 00992240
Types: Journal article
DOI: 10.1128/aem.01773-19
ORCIDs: 0000-0003-3847-0422 , Palsson, Bernhard O. and Feist, Adam M.

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis