About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Fatigue testing of a 14.3 m composite blade embedded with artificial defects – damage growth and structural health monitoring

From

Structural Design and Testing, Wind Energy Materials and Components Division, Department of Wind Energy, Technical University of Denmark1

Department of Wind Energy, Technical University of Denmark2

Composites Analysis and Mechanics, Wind Energy Materials and Components Division, Department of Wind Energy, Technical University of Denmark3

Villum Center for Advanced Structural and Material Testing, Centers, Technical University of Denmark4

Understanding fatigue damage growth of composite wind turbine blades is an essential step towards reliable structural health monitoring (SHM) and accurate lifetime prediction. This study presents a comprehensive experimental investigation into damage growth within a full-scale composite wind turbine blade under fatigue loading.

The blade has artificial defects embedded to initiate damage growth. The damages are detected and monitored using Infrared (IR) thermography, Digital Image Correlation (DIC), and Acoustic Emission (AE). Steady damage growth and imminent structural failure are identified, demonstrating the effectiveness of these techniques to detect subsurface damages.

New experimental observations include cyclic buckling of a trailing edge region and tapping and rubbing between the shear web and spar cap, both damages due to adhesive joint debonds. These observations highlight the necessity and the complexity of reliable modeling of nonlinear structural behavior on a large scale in order to predict local fatigue crack growth.

Language: English
Year: 2021
Pages: 106189
ISSN: 18785840 and 1359835x
Types: Journal article
DOI: 10.1016/j.compositesa.2020.106189
ORCIDs: Chen, Xiao , Semenov, Sergei , McGugan, Malcolm , Madsen, Steen Hjelm , Yeniceli, Süleyman Cem , Berring, Peter and Branner, Kim

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis