About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Iminodiacetonitrile induce-synthesis of two-dimensional PdNi/Ni@carbon nanosheets with uniform dispersion and strong interface bonding as an effective bifunctional eletrocatalyst in air-cathode

From

Nanjing Normal University1

Department of Physics, Technical University of Denmark2

Catalysis Theory Center, Department of Physics, Technical University of Denmark3

Developing highly-active, stable and conductive bifunctional electrocatalysts towards both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is a key step for rechargeable Zn-air batteries. From unique molecular structure of iminodiacetonitrile (IDAN), herein we design and build a novel organometallic coordination polymer (OCP) for the synthesis of hierarchical N-doped carbon nanosheets anchored PdNi/Ni hybrids (PdNi/Ni@N-C).

The cyano ligands in IDAN can form a low spin planar tetragonal complex with M2+ (M=Pd and Ni) by dsp2 hybridization, while the amino ligands tend to form a high spin tetrahedral complex with M2+ by sp3 hybridization, which not only induce the formation of 2D carbon nanosheets, but also strengthen metal-carbon interaction after the pyrolysis.

The optimized PdNi/Ni@N-C can function as an outstanding bifunctional electrocatalyst, presenting a positive half-wave potential of 0.89 V towards ORR and a low overpotential of 360 mV at 10 mA cm−2 towards OER, out-performing commercial precious-metal benchmarks. Theoretical calculations are performed to analyze the alloying effects of PdNi and identify the potential active sites for ORR/OER.

Furthermore, the PdNi/Ni@N-C as an air-cathode can enable rechargeable liquid and flexible all-solid-state Zn–air batteries to achieve higher power density and longer cycle life than costly Pd/C+RuO2-driven batteries. This work offers a potential molecular design strategy for the development of efficient electrocatalysts for energy storage and conversion.

Language: English
Year: 2021
Pages: 118-128
ISSN: 24058297
Types: Journal article
DOI: 10.1016/j.ensm.2021.07.027

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis