About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Geometric interpretation of four-wave mixing

From

Department of Photonics Engineering, Technical University of Denmark1

Fiber Optics, Devices and Non-linear Effects, Department of Photonics Engineering, Technical University of Denmark2

Bell Laboratories3

The nonlinear phenomenon of four-wave mixing (FWM) is investigated using a method, where, without the need of calculus, both phase and amplitudes of the mixing fields are visualized simultaneously, giving a complete overview of the FWM dynamics. This is done by introducing a set of Stokes-like coordinates of the electric fields, which reduce the FWM dynamics to a closed two-dimensional surface, similar to the Bloch sphere of quantum electrodynamics or the Pointcare´ sphere in polarization dynamics.

The coordinates are chosen so as to use the gauge invariance symmetries of the FWM equations which also give the conservation of action flux known as the Manley-Rowe relations. This reduces the dynamics of FWM to the one-dimensional intersection between the closed two-dimensional surface and the phase-plane given by the conserved Hamiltonian.

The analysis is advantageous for visualizing phase-dependent FWM phenomena which are found in a large variety of nonlinear systems and even in various optical communication schemes.

Language: English
Year: 2013
ISSN: 10941622 , 10502947 and 24699926
Types: Journal article
DOI: 10.1103/PhysRevA.88.043805
ORCIDs: Rottwitt, Karsten

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis