About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Conference paper

Light Robotics for Nanomedicine

From

Programmable Phase Optics, Department of Photonics Engineering, Technical University of Denmark1

Department of Photonics Engineering, Technical University of Denmark2

Technological developments from recent years have led to the emergence of a new field, Light Robotics1, which explores intelligent optical actuation of microfabricated structures with tailored properties. As one of the pioneers in the field, our group develops microrobots for biomedical applications and advanced light sculpting techniques for their efficient optical manipulation.

Two-photon polymerization enables direct laser writing of structures with a resolution of ~200 nm, which can be further improved to ~10 nm by post-processing or additional control over the printing process. In combination with surface modification via metal deposition or chemical functionalization, such microstructures can be tailored to specific applications for biomedical research purposes, such as localized mixing in microfluidic channels2.

Light sculpting using methods from the Generalized Phase Contrast (GPC) family allows precise, simultaneous control of several microstructures with six degrees of freedom. Light-controlled microrobots have already shown potential for biomedical research by e.g. local material delivery and mixing, indirect manipulation of biological samples or in situ sample characterization.

Our group focuses on further improving the fabrication process by bringing the microrobots closer to the nanoscale or by integrating multiple surface chemistries providing e.g. stealth, biological targetting or drug delivery functionalities. This would expand the applications of the 3D-printed microrobots, particularly for the manipulation and characterization of biological samples, bringing them a step closer towards becoming true ”microsurgeons”.

Language: English
Year: 2018
Proceedings: Copenhagen Nanomedicine Day 2018
Types: Conference paper
ORCIDs: Engay, Einstom and Bunea, Ada-Ioana

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis