About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Simple PEM water electrolyser model and experimental validation

We propose in this work a simple model for atmospheric or low-pressure PEM water electrolysers, which allows for simulating the electrochemical, thermal and H2 output flow behaviours with enough precision for engineering applications. The model has been validated by good agreement with experimental measurements performed in two different electrolysers.

The electrochemical submodel allows for obtaining the operating stack voltage from the input current and the stack temperature conditions. After non-linear fitting and statistical analysis from experimental data we conclude that the electrochemical submodel can be extrapolated for any PEM water electrolyser knowing two parameters with physical meaning: activation energy of the “water oxidation” for the anode electrocatalyst and the activation energy for proton transport in the solid polymer membrane.

This submodel was validated with experimental polarisation curves at different temperatures from two different PEM water electrolysers. The standard error of the model was less than 0.03. The results showed that the worst values of the estimation were obtained below 50 °C, indicating that the assumption of constant anode charge transfer coefficient is not true at lower temperature, which is in accordance with recent results.

In order to complete the electrochemical submodel, a practical methodology is presented here to obtain simple semi-empirical submodels for the H2 production and thermal behaviours for this kind of electrolysers. Both submodels are also discussed based on the experimental validations..

Language: English
Year: 2011
Pages: 1927-1938
ISSN: 18793487 and 03603199
Types: Journal article
DOI: 10.1016/j.ijhydene.2011.09.027

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis