About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Forecasting fish stock dynamics under climate change: Baltic herring (Clupea harengus) as a case study

From

Lund University1

National Marine Fisheries Research Institute2

Centre for Ocean Life, National Institute of Aquatic Resources, Technical University of Denmark3

National Institute of Aquatic Resources, Technical University of Denmark4

University of Gothenburg5

Climate change and anthropogenic disturbances may affect marine populations and ecosystems through multiple pathways. In this study we present a framework in which we integrate existing models and knowledge on basic regulatory processes to investigate the potential impact of future scenarios of fisheries exploitation and climate change on the temporal dynamics of the central Baltic herring stock.

Alternative scenarios of increasing sea surface temperature and decreasing salinity of the Baltic Sea from a global climate model were combined with two alternative fishing scenarios, and their direct and ecosystem-mediated effects (i.e., through predation by cod and competition with sprat) on the herring population were evaluated for the period 2010-2050.

Gradual increase in temperature has a positive impact on the long-term productivity of the herring stock, but it has the potential to enhance the recovery of the herring stock only in combination with sustainable fisheries management (i.e., Fmsy). Conversely, projections of herring spawning stock biomass (SSB) were generally low under elevated fishing mortality levels (Fhigh), comparable with those experienced by the stock during the 1990s.

Under the combined effects of long-term warming and high fishing mortality uncertainty in herring SSB projections was higher and increasing for the duration of the forecasts, suggesting a synergistic effect of fishery exploitation and climate forcing on fish populations dynamics. Our study shows that simulations of long-term fish dynamics can be an informative tool to derive expectations of the potential long-term impact of alternative future scenarios of exploitation and climate change

Language: English
Year: 2014
Pages: 258-269
ISSN: 13619470 , 10546006 and 13652419
Types: Journal article
DOI: 10.1111/fog.12060
ORCIDs: Lindegren, Martin

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis