About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Layout-Driven Post-Placement Techniques for Temperature Reduction and Thermal Gradient Minimization

From

Oticon Danmark AS1

Polytechnic University of Turin2

Department of Applied Mathematics and Computer Science, Technical University of Denmark3

Embedded Systems Engineering, Department of Applied Mathematics and Computer Science, Technical University of Denmark4

With the continuing scaling of CMOS technology, on-chip temperature and thermal-induced variations have become a major design concern. To effectively limit the high temperature in a chip equipped with a cost-effective cooling system, thermal specific approaches, besides low power techniques, are necessary at the chip design level.

The high temperature in hotspots and large thermal gradients are caused by the high local power density and the nonuniform power dissipation across the chip. With the objective of reducing power density in hotspots, we propose two placement techniques that spread cells in hotspots over a larger area.

Increasing the area occupied by the hotspot directly reduces its power density, leading to a reduction in peak temperature and thermal gradient. To minimize the introduced overhead in delay and dynamic power, we maintain the relative positions of the coupling cells in the new layout. We compare the proposed methods in terms of temperature reduction, timing, and area overhead to the baseline method, which enlarges the circuit area uniformly.

The experimental results showed that our methods achieve a larger reduction in both peak temperature and thermal gradient than the baseline method. The baseline method, although reducing peak temperature in most cases, has little impact on thermal gradient.

Language: English
Publisher: IEEE
Year: 2013
Pages: 406-418
ISSN: 19374151 and 02780070
Types: Journal article
DOI: 10.1109/TCAD.2012.2228267
ORCIDs: Nannarelli, Alberto

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis