About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Light-driven oxygen production from superoxide by Mn-binding bacterial reaction centers

From

Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA. JAllen@asu.edu1

One of the outstanding questions concerning the early Earth is how ancient phototrophs made the evolutionary transition from anoxygenic to oxygenic photosynthesis, which resulted in a substantial increase in the amount of oxygen in the atmosphere. We have previously demonstrated that reaction centers from anoxygenic photosynthetic bacteria can be modified to bind a redox-active Mn cofactor, thus gaining a key functional feature of photosystem II, which contains the site for water oxidation in cyanobacteria, algae, and plants [Thielges M, et al. (2005) Biochemistry 44:7389-7394].

In this paper, the Mn-binding reaction centers are shown to have a light-driven enzymatic function; namely, the ability to convert superoxide into molecular oxygen. This activity has a relatively high efficiency with a k(cat) of approximately 1 s(-1) that is significantly larger than typically observed for designed enzymes, and a K(m) of 35-40 μM that is comparable to the value of 50 μM for Mn-superoxide dismutase, which catalyzes a similar reaction.

Unlike wild-type reaction centers, the highly oxidizing reaction centers are not stable in the light unless they have a bound Mn. The stability and enzymatic ability of this type of Mn-binding reaction centers would have provided primitive phototrophs with an environmental advantage before the evolution of organisms with a more complex Mn(4)Ca cluster needed to perform the multielectron reactions required to oxidize water.

Language: English
Publisher: National Academy of Sciences
Year: 2012
Pages: 2314-2318
ISSN: 10916490 and 00278424
Types: Journal article
DOI: 10.1073/pnas.1115364109

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis