About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

A comparison of time integration methods in an unsteady low-Reynolds-number flow

From

Laboratory of Applied Thermodynamics, Helsinki University of Technology, P.O. Box 4400, Finland1

This paper describes three different time integration methods for unsteady incompressible Navier–Stokes equations. Explicit Euler and fractional-step Adams–Bashford methods are compared with an implicit three-level method based on a steady-state SIMPLE method. The implicit solver employs a dual time stepping and an iteration within the time step.

The spatial discretization is based on a co-located finite-volume technique. The influence of the convergence limits and the time-step size on the accuracy of the predictions are studied. The efficiency of the different solvers is compared in a vortex-shedding flow over a cylinder in the Reynolds number range of 100–1600.

A high-Reynolds-number flow over a biconvex airfoil profile is also computed. The computations are performed in two dimensions. At the low-Reynolds-number range the explicit methods appear to be faster by a factor from 5 to 10. In the high-Reynolds-number case, the explicit Adams–Bashford method and the implicit method appear to be approximately equally fast while yielding similar results.

Copyright © 2002 John Wiley & Sons, Ltd.

Language: English
Publisher: John Wiley & Sons, Ltd.
Year: 2002
Pages: 361-390
ISSN: 10970363 and 02712091
Types: Journal article
DOI: 10.1002/fld.286

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis